Center for Network Systems Biology — Boston University

New Publication by Jarrod Moore in International Journal of Molecular Sciences

A first publication by Jarrod Moore, an MD, PhD candidate at Boston University School of Medicine and student of the Center for Network Systems Biology, in the International Journal of Molecular Sciences, looking at hypertrophic cardiomyopathy, “Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy.” Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease thought to be principally caused by mutations in sarcomeric proteins. Despite extensive genetic analysis, there are no comprehensive molecular frameworks for how single mutations in contractile proteins result in the diverse assortment of cellular, phenotypic, and pathobiological cascades seen in HCM. Molecular profiling and system biology approaches are powerful tools for elucidating, quantifying, and interpreting dynamic signaling pathways and differential macromolecule expression profiles for a wide range of sample types, including cardiomyopathy.

Cutting-edge approaches combine high-performance analytical instrumentation (e.g., mass spectrometry) with computational methods (e.g., bioinformatics) to study the comparative activity of biochemical pathways based on relative abundances of functionally linked proteins of interest. Cardiac research is poised to benefit enormously from the application of this toolkit to cardiac tissue models, which recapitulate key aspects of pathogenesis. In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic and phosphoproteomic technologies and their application to in vitro and ex vivo models of HCM for global mapping of macromolecular alterations driving disease progression, emphasizing their potential for defining the components of basic biological systems, the fundamental mechanistic basis of HCM pathogenesis, and treating the ensuing varied clinical outcomes seen among affected patient cohorts. Jarrod Moore is in his third doctoral year, which includes combined mass-spectrometry-based proteomics and tissue engineering training. His work is generously supported through the Kilachand Fellowship from the Multicellular Design Program at Boston University and the MD/PhD program at Boston University School of Medicine. The article can be accessed here: https://www.mdpi.com/1422-0067/22/24/13644

Leave a replay

Share online

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on whatsapp
WhatsApp